Lefschetz properties and basic constructions on simplicial spheres

The well known g -conjecture for homology spheres follows from the stronger conjecture that the face ring over the reals of a homology sphere, modulo a linear system of parameters, admits the strong-Lefschetz property. We prove that the strong-Lefschetz property is preserved under the following cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic combinatorics 2010-02, Vol.31 (1), p.111-129
Hauptverfasser: Babson, Eric, Nevo, Eran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The well known g -conjecture for homology spheres follows from the stronger conjecture that the face ring over the reals of a homology sphere, modulo a linear system of parameters, admits the strong-Lefschetz property. We prove that the strong-Lefschetz property is preserved under the following constructions on homology spheres: join, connected sum, and stellar subdivisions. The last construction is a step towards proving the g -conjecture for piecewise-linear spheres.
ISSN:0925-9899
1572-9192
DOI:10.1007/s10801-009-0189-9