Lefschetz properties and basic constructions on simplicial spheres
The well known g -conjecture for homology spheres follows from the stronger conjecture that the face ring over the reals of a homology sphere, modulo a linear system of parameters, admits the strong-Lefschetz property. We prove that the strong-Lefschetz property is preserved under the following cons...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic combinatorics 2010-02, Vol.31 (1), p.111-129 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The well known
g
-conjecture for homology spheres follows from the stronger conjecture that the face ring over the reals of a homology sphere, modulo a linear system of parameters, admits the strong-Lefschetz property. We prove that the strong-Lefschetz property is preserved under the following constructions on homology spheres: join, connected sum, and stellar subdivisions. The last construction is a step towards proving the
g
-conjecture for piecewise-linear spheres. |
---|---|
ISSN: | 0925-9899 1572-9192 |
DOI: | 10.1007/s10801-009-0189-9 |