Coassociative magmatic bialgebras and the Fine numbers

We prove a structure theorem for the connected coassociative magmatic bialgebras. The space of primitive elements is an algebra over an operad called the primitive operad. We prove that the primitive operad is magmatic generated by n −2 operations of arity n . The dimension of the space of all the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic combinatorics 2008-08, Vol.28 (1), p.97-114
Hauptverfasser: Holtkamp, Ralf, Loday, Jean-Louis, Ronco, María
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a structure theorem for the connected coassociative magmatic bialgebras. The space of primitive elements is an algebra over an operad called the primitive operad. We prove that the primitive operad is magmatic generated by n −2 operations of arity n . The dimension of the space of all the n -ary operations of this primitive operad turns out to be the Fine number F n −1 . In short, the triple of operads ( As, Mag, MagFine ) is good.
ISSN:0925-9899
1572-9192
DOI:10.1007/s10801-007-0089-9