A carbon nanotube-reinforced noble tin anode structure for lithium-ion batteries
A carbon nanotube (CNT)-reinforced noble tin anode structure in which CNTs fasten the tin layer to a copper underlayer has been fabricated using plating techniques so as to improve the cyclability of lithium-ion batteries. In this process, a Cu/CNTs composite layer, on one side of which CNTs protrud...
Gespeichert in:
Veröffentlicht in: | Journal of applied electrochemistry 2016-03, Vol.46 (3), p.331-338 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A carbon nanotube (CNT)-reinforced noble tin anode structure in which CNTs fasten the tin layer to a copper underlayer has been fabricated using plating techniques so as to improve the cyclability of lithium-ion batteries. In this process, a Cu/CNTs composite layer, on one side of which CNTs protrude from the surface, is formed using a reverse current electrodeposition technique. The surface of this composite layer is subsequently coated with a tin layer by a substitution-type electroless plating technique, resulting in the CNT-reinforced noble tin anode structure. The electrochemical characteristics of this noble tin anode structure have been evaluated and compared to those of a tin anode structure without CNTs. The noble tin anode structure shows significantly improved cyclability compared with the tin anode structure and maintains a higher reversible capacity of 591 mAh g
−1
, a value that is 1.6 times the theoretical capacity of graphite, even after 30 cycles.
Graphical Abstract |
---|---|
ISSN: | 0021-891X 1572-8838 |
DOI: | 10.1007/s10800-016-0933-5 |