Bilinear Bäcklund Transformation, Fission/Fusion and Periodic Waves of a (3+1)-dimensional Kadomtsev-Petviashvili Equation for the Shallow Water Waves

Kadomtsev-Petviashvili (KP)-typed models are used to elucidate certain shallow water waves that arise in plasma physics, marine engineering, ocean physics, fluid dynamics, etc. In this paper, we investigate a (3+1)-dimensional KP equation for the shallow water waves: (1) Via some exchange formulae,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of theoretical physics 2024-03, Vol.63 (3), Article 75
Hauptverfasser: Feng, Chun-Hui, Tian, Bo, Gao, Xiao-Tian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kadomtsev-Petviashvili (KP)-typed models are used to elucidate certain shallow water waves that arise in plasma physics, marine engineering, ocean physics, fluid dynamics, etc. In this paper, we investigate a (3+1)-dimensional KP equation for the shallow water waves: (1) Via some exchange formulae, a bilinear Bäcklund transformation and the corresponding soliton-like solutions are constructed. (2) Via symbolic computation, fission/fusion solutions are derived with some parameter conditions in the N -soliton solutions, which are different from those in the existing literature, where N is a positive integer. We graphically display the spatial structures of the fission/fusion waves to supplement the existing literature. (3) Periodic-wave solutions are worked out via the Hirota-Riemann method. Via the asymptotic properties, relation between the periodic-wave and one-soliton solutions is discussed.
ISSN:1572-9575
1572-9575
DOI:10.1007/s10773-024-05565-3