Fractional Canonical Quantization: a Parallel with Noncommutativity

Adopting a particular approach to fractional calculus, this paper sets out to build up a consistent extension of the Faddeev-Jackiw (or Symplectic) algorithm to carry out the quantization procedure of coarse-grained models in the standard canonical way. In our treatment, we shall work with the Modif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of theoretical physics 2014-07, Vol.53 (7), p.2379-2395
Hauptverfasser: Godinho, Cresus F. L., Weberszpil, Jose, Helayël Neto, J. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adopting a particular approach to fractional calculus, this paper sets out to build up a consistent extension of the Faddeev-Jackiw (or Symplectic) algorithm to carry out the quantization procedure of coarse-grained models in the standard canonical way. In our treatment, we shall work with the Modified Riemman Liouville (MRL) approach for fractional derivatives, where the chain rule is as efficient as it is in the standard differential calculus. We still present a case where we consider the situation of charged particles moving on a plane with velocity r ̇ , subject to an external and intense magnetic field in a coarse-grained scenario. We propose an interesting parallelism with the noncommutative case.
ISSN:0020-7748
1572-9575
DOI:10.1007/s10773-014-2037-5