Exact Solutions of the Duffin-Kemmer-Petiau Equation with Linear Potential in the Presence of a Minimal Length
We present the (1+1)-dimension Duffin-Kemmer-Petiau equation for the spin-0 and spin-1 cases with vector and scalar linear potentials in the context of modified quantum mechanics. The minimal length is characterized in the presence of a non-zero minimum uncertainty in position. The energy eigenvalue...
Gespeichert in:
Veröffentlicht in: | International journal of theoretical physics 2012-12, Vol.51 (12), p.3963-3969 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present the (1+1)-dimension Duffin-Kemmer-Petiau equation for the spin-0 and spin-1 cases with vector and scalar linear potentials in the context of modified quantum mechanics. The minimal length is characterized in the presence of a non-zero minimum uncertainty in position. The energy eigenvalues and eigenfunctions are obtained for both cases in the momentum space. There is an energy eigenvalue in spite of the
n
=0 case due to the presence of the minimal length. |
---|---|
ISSN: | 0020-7748 1572-9575 |
DOI: | 10.1007/s10773-012-1288-2 |