Exact Solutions of the Duffin-Kemmer-Petiau Equation with Linear Potential in the Presence of a Minimal Length

We present the (1+1)-dimension Duffin-Kemmer-Petiau equation for the spin-0 and spin-1 cases with vector and scalar linear potentials in the context of modified quantum mechanics. The minimal length is characterized in the presence of a non-zero minimum uncertainty in position. The energy eigenvalue...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of theoretical physics 2012-12, Vol.51 (12), p.3963-3969
Hauptverfasser: Taşkın, Ferhat, Yaman, Zeynep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present the (1+1)-dimension Duffin-Kemmer-Petiau equation for the spin-0 and spin-1 cases with vector and scalar linear potentials in the context of modified quantum mechanics. The minimal length is characterized in the presence of a non-zero minimum uncertainty in position. The energy eigenvalues and eigenfunctions are obtained for both cases in the momentum space. There is an energy eigenvalue in spite of the n =0 case due to the presence of the minimal length.
ISSN:0020-7748
1572-9575
DOI:10.1007/s10773-012-1288-2