Feynman’s Corner Rule; Quantum Propagation from Special Relativity

Feynman’s sum-over-paths prescription for the Dirac equation in a two dimensional spacetime can be formulated to give an unconventional view of the relationship between quantization and special relativity. By considering a local rule for the maintenance of Lorentz covariance in a discrete space, one...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of theoretical physics 2010-10, Vol.49 (10), p.2528-2539
1. Verfasser: Ord, G. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Feynman’s sum-over-paths prescription for the Dirac equation in a two dimensional spacetime can be formulated to give an unconventional view of the relationship between quantization and special relativity. By considering a local rule for the maintenance of Lorentz covariance in a discrete space, one is able to see the origin of Feynman’s rule and, taking a continuum limit at the last step, one obtains the Dirac propagator as a manifestation of special relativity, rather than a formal addition to it. In this route to the Dirac equation, the path-dependent phase of wavefunctions, relativistic or not, is a direct manifestations of path-dependent proper time.
ISSN:0020-7748
1572-9575
DOI:10.1007/s10773-010-0445-8