Quantum Gates and Quantum Algorithms with Clifford Algebra Technique
We use the Clifford algebra technique (J. Math. Phys. 43:5782, 2002 ; J. Math. Phys. 44:4817, 2003 ), that is nilpotents and projectors which are binomials of the Clifford algebra objects γ a with the property { γ a , γ b } + =2 η ab , for representing quantum gates and quantum algorithms needed in...
Gespeichert in:
Veröffentlicht in: | International journal of theoretical physics 2009-02, Vol.48 (2), p.507-515 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use the Clifford algebra technique (J. Math. Phys. 43:5782,
2002
; J. Math. Phys. 44:4817,
2003
), that is nilpotents and projectors which are binomials of the Clifford algebra objects
γ
a
with the property {
γ
a
,
γ
b
}
+
=2
η
ab
, for representing quantum gates and quantum algorithms needed in quantum computers in a simple and an elegant way. We identify
n
-qubits with the spinor representations of the group
SO
(1,3) for a system of
n
spinors. Representations are expressed in terms of products of projectors and nilpotents; we pay attention also on the nonrelativistic limit. An algorithm for extracting a particular information out of a general superposition of 2
n
qubit states is presented. It reproduces for a particular choice of the initial state the Grover’s algorithm (Proc. 28th Annual ACM Symp. Theory Comput. 212,
1996
). |
---|---|
ISSN: | 0020-7748 1572-9575 |
DOI: | 10.1007/s10773-008-9826-7 |