Critical Mentorship in Undergraduate Research Experience BUILDs Science Identity and Self-Efficacy

In 2014, the NIH Diversity Program Consortium (DPC) launched an initiative to implement and evaluate novel interventions at a variety of academic institutions across the country to engage undergraduate students from diverse backgrounds in biomedically-related research. The local intervention examine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of science and mathematics education 2024-06
Hauptverfasser: Moon, Sungmin, Guan, Shu-Sha Angie, Vargas, Jose H., Lin, Judith C. P., Kwan, Patchareeya, Saetermoe, Carrie L., Flores, Gilberto, Chavira, Gabriela
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 2014, the NIH Diversity Program Consortium (DPC) launched an initiative to implement and evaluate novel interventions at a variety of academic institutions across the country to engage undergraduate students from diverse backgrounds in biomedically-related research. The local intervention examined in the current study provides Critical Race Theory (CRT)-informed mentoring, more broadly called critical mentoring, for its participants. We examined the relationship between critical mentoring and student outcomes. In this study, student outcomes consisted of three components: (a) mentor satisfaction, (b) science identity, and (c) science self-efficacy. To determine student outcomes, we used the 2020 Student Annual Follow-up Survey (SAFS). We found that participants in the intervention program reported higher levels of critical mentoring than non-intervention participants and critical mentoring was, in turn, predictive of higher. mentorship satisfaction, science identity, and science self-efficacy. This finding implies that the CRT-informed intervention was more effective by developing an environment in which high-quality, critical mentors influenced students’ sense of science identity and self-efficacy. Additionally, we also found that intervention participants reported higher science identity and science self-efficacy than non-intervention participants, which suggests that the intervention cultivated science identity and self-efficacy in other ways outside of critical mentorship as well. The current study highlights how participation in an intervention program can increase science identity and self-efficacy, two factors predictive of science career intentions. The connection between critical mentoring practices and increased science identity and self-efficacy underscores the significance of culturally and racially relevant social support in science education.
ISSN:1571-0068
1573-1774
DOI:10.1007/s10763-024-10476-0