Convex geodesic bicombings and hyperbolicity

A geodesic bicombing on a metric space selects for every pair of points a geodesic connecting them. We prove existence and uniqueness results for geodesic bicombings satisfying different convexity conditions. In combination with recent work by the second author on injective hulls, this shows that ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2015-08, Vol.177 (1), p.367-384
Hauptverfasser: Descombes, Dominic, Lang, Urs
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A geodesic bicombing on a metric space selects for every pair of points a geodesic connecting them. We prove existence and uniqueness results for geodesic bicombings satisfying different convexity conditions. In combination with recent work by the second author on injective hulls, this shows that every word hyperbolic group acts geometrically on a proper, finite dimensional space X with a unique (hence equivariant) convex geodesic bicombing of the strongest type. Furthermore, the Gromov boundary of  X is a Z -set in the closure of X , and the latter is a metrizable absolute retract, in analogy with the Bestvina–Mess theorem on the Rips complex.
ISSN:0046-5755
1572-9168
DOI:10.1007/s10711-014-9994-y