Toric moment mappings and Riemannian structures
Coadjoint orbits for the group SO (6) parametrize Riemannian G -reductions in six dimensions, and we use this correspondence to interpret symplectic fibrations between these orbits, and to analyse moment polytopes associated to the standard Hamiltonian torus action on the coadjoint orbits. The theor...
Gespeichert in:
Veröffentlicht in: | Geometriae dedicata 2013-02, Vol.162 (1), p.129-152 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coadjoint orbits for the group
SO
(6) parametrize Riemannian
G
-reductions in six dimensions, and we use this correspondence to interpret symplectic fibrations between these orbits, and to analyse moment polytopes associated to the standard Hamiltonian torus action on the coadjoint orbits. The theory is then applied to describe so-called intrinsic torsion varieties of Riemannian structures on the Iwasawa manifold. |
---|---|
ISSN: | 0046-5755 1572-9168 |
DOI: | 10.1007/s10711-012-9720-6 |