Moduli of triangles in the Heisenberg group
We study triangles in the three-dimensional Heisenberg group, , equipped with the Carnot-Carathéodory geometry. The set of ordered triangles in (excluding certain degenerate triangles), up to congruence is naturally identified via a parametrization map to a fine moduli space of parameters. We determ...
Gespeichert in:
Veröffentlicht in: | Geometriae dedicata 2012-12, Vol.161 (1), p.189-219 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study triangles in the three-dimensional Heisenberg group,
, equipped with the Carnot-Carathéodory geometry. The set of ordered triangles in
(excluding certain degenerate triangles), up to congruence is naturally identified via a parametrization map to a fine moduli space of parameters. We determine the homeomorphism type of this moduli space and also that of the coarse moduli space of unordered triangles. We describe a boundary for the fine moduli space and construct a compactification for it, up to similarity under the non-isotropic dilation of
. Additionally, some trigonometric results for the Carnot-Carathéodory geometry of
are given: an angle deficit formula and an analog of the Law of Sines in Euclidean geometry. |
---|---|
ISSN: | 0046-5755 1572-9168 |
DOI: | 10.1007/s10711-012-9701-9 |