Projective deformations of hyperbolic Coxeter 3-orbifolds

By using Klein’s model for hyperbolic geometry, hyperbolic structures on orbifolds or manifolds provide examples of real projective structures. By Andreev’s theorem, many 3-dimensional reflection orbifolds admit a finite volume hyperbolic structure, and such a hyperbolic structure is unique. However...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2012-08, Vol.159 (1), p.125-167
Hauptverfasser: Choi, Suhyoung, Hodgson, Craig D., Lee, Gye-Seon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By using Klein’s model for hyperbolic geometry, hyperbolic structures on orbifolds or manifolds provide examples of real projective structures. By Andreev’s theorem, many 3-dimensional reflection orbifolds admit a finite volume hyperbolic structure, and such a hyperbolic structure is unique. However, the induced real projective structure on some such 3-orbifolds deforms into a family of real projective structures that are not induced from hyperbolic structures. In this paper, we find new classes of compact and complete hyperbolic reflection 3-orbifolds with such deformations. We also explain numerical and exact results on projective deformations of some compact hyperbolic cubes and dodecahedra.
ISSN:0046-5755
1572-9168
DOI:10.1007/s10711-011-9650-8