Goldman flows on a nonorientable surface
Given an embedded cylinder in an arbitrary surface, we give a gauge theoretic definition of the associated Goldman flow, which is a circle action on a dense open subset of the moduli space of equivalence classes of flat SU (2)-connections over the surface. A cylinder in a compact nonorientable surfa...
Gespeichert in:
Veröffentlicht in: | Geometriae dedicata 2008-08, Vol.135 (1), p.129-145 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given an embedded cylinder in an arbitrary surface, we give a gauge theoretic definition of the associated Goldman flow, which is a circle action on a dense open subset of the moduli space of equivalence classes of flat
SU
(2)-connections over the surface. A cylinder in a compact nonorientable surface lifts to two cylinders in the orientable double cover, and the
composite flow
is the composition of one of the associated flows with the inverse flow of the other. Providing explicit descriptions, we relate the flow on the moduli space of the nonorientable surface with the composite flow on the moduli space of the double cover. We prove that the composite flow preserves a certain Lagrangian submanifold. |
---|---|
ISSN: | 0046-5755 1572-9168 |
DOI: | 10.1007/s10711-008-9267-8 |