Goldman flows on a nonorientable surface

Given an embedded cylinder in an arbitrary surface, we give a gauge theoretic definition of the associated Goldman flow, which is a circle action on a dense open subset of the moduli space of equivalence classes of flat SU (2)-connections over the surface. A cylinder in a compact nonorientable surfa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2008-08, Vol.135 (1), p.129-145
1. Verfasser: Klein, David B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given an embedded cylinder in an arbitrary surface, we give a gauge theoretic definition of the associated Goldman flow, which is a circle action on a dense open subset of the moduli space of equivalence classes of flat SU (2)-connections over the surface. A cylinder in a compact nonorientable surface lifts to two cylinders in the orientable double cover, and the composite flow is the composition of one of the associated flows with the inverse flow of the other. Providing explicit descriptions, we relate the flow on the moduli space of the nonorientable surface with the composite flow on the moduli space of the double cover. We prove that the composite flow preserves a certain Lagrangian submanifold.
ISSN:0046-5755
1572-9168
DOI:10.1007/s10711-008-9267-8