Unified QBF certification and its applications
Quantified Boolean formulae (QBF) allow compact encoding of many decision problems. Their importance motivated the development of fast QBF solvers. Certifying the results of a QBF solver not only ensures correctness, but also enables certain synthesis and verification tasks. To date the certificate...
Gespeichert in:
Veröffentlicht in: | Formal methods in system design 2012-08, Vol.41 (1), p.45-65 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantified Boolean formulae (QBF) allow compact encoding of many decision problems. Their importance motivated the development of fast QBF solvers. Certifying the results of a QBF solver not only ensures correctness, but also enables certain synthesis and verification tasks. To date the certificate of a true formula can be in the form of either a syntactic cube-resolution proof or a semantic Skolem-function model whereas that of a false formula is only in the form of a syntactic clause-resolution proof. The semantic certificate for a false QBF is missing, and the syntactic and semantic certificates are somewhat unrelated. This paper identifies the missing Herbrand-function countermodel for false QBF, and strengthens the connection between syntactic and semantic certificates by showing that, given a true QBF, its Skolem-function model is derivable from its cube-resolution proof of satisfiability as well as from its clause-resolution proof of unsatisfiability under formula negation. Consequently Skolem-function derivation can be decoupled from special Skolemization-based solvers and computed from standard search-based ones. Experimental results show strong benefits of the new method. |
---|---|
ISSN: | 0925-9856 1572-8102 |
DOI: | 10.1007/s10703-012-0152-6 |