Unified QBF certification and its applications

Quantified Boolean formulae (QBF) allow compact encoding of many decision problems. Their importance motivated the development of fast QBF solvers. Certifying the results of a QBF solver not only ensures correctness, but also enables certain synthesis and verification tasks. To date the certificate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Formal methods in system design 2012-08, Vol.41 (1), p.45-65
Hauptverfasser: Balabanov, Valeriy, Jiang, Jie-Hong R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantified Boolean formulae (QBF) allow compact encoding of many decision problems. Their importance motivated the development of fast QBF solvers. Certifying the results of a QBF solver not only ensures correctness, but also enables certain synthesis and verification tasks. To date the certificate of a true formula can be in the form of either a syntactic cube-resolution proof or a semantic Skolem-function model whereas that of a false formula is only in the form of a syntactic clause-resolution proof. The semantic certificate for a false QBF is missing, and the syntactic and semantic certificates are somewhat unrelated. This paper identifies the missing Herbrand-function countermodel for false QBF, and strengthens the connection between syntactic and semantic certificates by showing that, given a true QBF, its Skolem-function model is derivable from its cube-resolution proof of satisfiability as well as from its clause-resolution proof of unsatisfiability under formula negation. Consequently Skolem-function derivation can be decoupled from special Skolemization-based solvers and computed from standard search-based ones. Experimental results show strong benefits of the new method.
ISSN:0925-9856
1572-8102
DOI:10.1007/s10703-012-0152-6