Clifford Algebras in Symplectic Geometry and Quantum Mechanics

The necessary appearance of Clifford algebras in the quantum description of fermions has prompted us to re-examine the fundamental role played by the quaternion Clifford algebra, C 0,2 . This algebra is essentially the geometric algebra describing the rotational properties of space. Hidden within th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of physics 2013-04, Vol.43 (4), p.424-439
Hauptverfasser: Binz, Ernst, de Gosson, Maurice A., Hiley, Basil J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The necessary appearance of Clifford algebras in the quantum description of fermions has prompted us to re-examine the fundamental role played by the quaternion Clifford algebra, C 0,2 . This algebra is essentially the geometric algebra describing the rotational properties of space. Hidden within this algebra are symplectic structures with Heisenberg algebras at their core. This algebra also enables us to define a Poisson algebra of all homogeneous quadratic polynomials on a two-dimensional sub-space, of the Euclidean three-space. This enables us to construct a Poisson Clifford algebra, ℍ F , of a finite dimensional phase space which will carry the dynamics. The quantum dynamics appears as a realisation of ℍ F in terms of a Clifford algebra consisting of Hermitian operators.
ISSN:0015-9018
1572-9516
DOI:10.1007/s10701-012-9634-z