Brion’s theorem for Gelfand–Tsetlin polytopes

This work is motivated by the observation that the character of an irreducible gl n -module (a Schur polynomial), being the sum of exponentials of integer points in a Gelfand–Tsetlin polytope, can be expressed by using Brion’s theorem. The main result is that, in the case of a regular highest weight...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Functional analysis and its applications 2016-04, Vol.50 (2), p.98-106
1. Verfasser: Makhlin, I. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work is motivated by the observation that the character of an irreducible gl n -module (a Schur polynomial), being the sum of exponentials of integer points in a Gelfand–Tsetlin polytope, can be expressed by using Brion’s theorem. The main result is that, in the case of a regular highest weight, the contributions of all nonsimplicial vertices vanish, while the number of simplicial vertices is n ! and the contributions of these vertices are precisely the summands in Weyl’s character formula.
ISSN:0016-2663
1573-8485
DOI:10.1007/s10688-016-0135-2