The Möbius function on Abelian semigroups
Let X be an Abelian semigroup such that the following conditions hold: (i) if x × y = II (II is the identity element), then x = y = II; (ii) the set {{ x, y }: x × y = a } is finite for any a ∈ X . Let Λ be any field, and let ℰ be the algebra of all Λ-valued functions on X . The convolution of u, υ...
Gespeichert in:
Veröffentlicht in: | Functional analysis and its applications 2011-03, Vol.45 (1), p.73-76 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
be an Abelian semigroup such that the following conditions hold: (i) if
x
×
y
= II (II is the identity element), then
x
=
y
= II; (ii) the set {{
x, y
}:
x
×
y
=
a
} is finite for any
a
∈
X
. Let Λ be any field, and let ℰ be the algebra of all Λ-valued functions on
X
. The convolution of
u, υ
∈ ℰ is defined by
We set
ɛ
(
x
) = 1
Λ
for all
x
∈
X
. The Möbius function µ is defined as the solution of the equation
ɛ
* µ =
δ
(
δ
is the Dirac function). The Möbius function is unique (if it exists at all).
Some existence conditions are given. If Λ is replaced by the ring of integers, then µ exists if and only if
X
does not contain nontrivial idempotents. |
---|---|
ISSN: | 0016-2663 1573-8485 |
DOI: | 10.1007/s10688-011-0009-6 |