The Möbius function on Abelian semigroups

Let X be an Abelian semigroup such that the following conditions hold: (i) if x × y = II (II is the identity element), then x = y = II; (ii) the set {{ x, y }: x × y = a } is finite for any a ∈ X . Let Λ be any field, and let ℰ be the algebra of all Λ-valued functions on X . The convolution of u, υ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Functional analysis and its applications 2011-03, Vol.45 (1), p.73-76
1. Verfasser: Gorin, E. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be an Abelian semigroup such that the following conditions hold: (i) if x × y = II (II is the identity element), then x = y = II; (ii) the set {{ x, y }: x × y = a } is finite for any a ∈ X . Let Λ be any field, and let ℰ be the algebra of all Λ-valued functions on X . The convolution of u, υ ∈ ℰ is defined by We set ɛ ( x ) = 1 Λ for all x ∈ X . The Möbius function µ is defined as the solution of the equation ɛ * µ = δ ( δ is the Dirac function). The Möbius function is unique (if it exists at all). Some existence conditions are given. If Λ is replaced by the ring of integers, then µ exists if and only if X does not contain nontrivial idempotents.
ISSN:0016-2663
1573-8485
DOI:10.1007/s10688-011-0009-6