Provable lattice reduction of $$\mathbb {Z}^n$$ with blocksize n/2

The Lattice Isomorphism Problem (LIP) is the computational task of recovering, assuming it exists, an orthogonal linear transformation sending one lattice to another. For cryptographic purposes, the case of the trivial lattice $$\mathbb Z^n$$ Z n is of particular interest ( $$\mathbb {Z}$$ Z LIP). H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Designs, codes, and cryptography codes, and cryptography, 2024-04, Vol.92 (4), p.909-916
1. Verfasser: Ducas, Léo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Lattice Isomorphism Problem (LIP) is the computational task of recovering, assuming it exists, an orthogonal linear transformation sending one lattice to another. For cryptographic purposes, the case of the trivial lattice $$\mathbb Z^n$$ Z n is of particular interest ( $$\mathbb {Z}$$ Z LIP). Heuristic analysis suggests that the BKZ algorithm with blocksize $$\beta = n/2 + o(n)$$ β = n / 2 + o ( n ) solves such instances (Ducas, Postlethwaite, Pulles, van Woerden, ASIACRYPT 2022). In this work, I propose a provable version of this statement, namely, that $$\mathbb {Z}$$ Z LIP can indeed be solved by making polynomially many calls to a Shortest Vector Problem oracle in dimension at most $$n/2 + 1$$ n / 2 + 1 .
ISSN:0925-1022
1573-7586
DOI:10.1007/s10623-023-01320-7