Combinatorial constructions for optimal 2-D optical orthogonal codes with AM-OPPTS property

We develop a new one-to-one correspondence between a two-dimensional ( m  × n ,  k ,  ρ ) optical orthogonal code (2-D ( m  × n ,  k ,  ρ )-OOC) with AM-OPPTS (at most one-pulse per time slot) property and a certain combinatorial subject, called an n -cyclic holey packing of type m n . By this link,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Designs, codes, and cryptography codes, and cryptography, 2014-05, Vol.71 (2), p.315-330
Hauptverfasser: Dai, Peipei, Wang, Jianmin, Yin, Jianxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a new one-to-one correspondence between a two-dimensional ( m  × n ,  k ,  ρ ) optical orthogonal code (2-D ( m  × n ,  k ,  ρ )-OOC) with AM-OPPTS (at most one-pulse per time slot) property and a certain combinatorial subject, called an n -cyclic holey packing of type m n . By this link, an upper bound on the size of a 2-D ( m  × n ,  k ,  ρ )-OOC with AM-OPPTS property is derived. Afterwards, we employ combinatorial methods to construct infinitely many 2-D ( m  × n ,  k , 1)-OOCs with AM-OPPTS property, whose existence was previously unknown. All these constructions meet the upper bounds with equality and are thus optimal.
ISSN:0925-1022
1573-7586
DOI:10.1007/s10623-012-9733-z