Combinatorial constructions for optimal 2-D optical orthogonal codes with AM-OPPTS property
We develop a new one-to-one correspondence between a two-dimensional ( m × n , k , ρ ) optical orthogonal code (2-D ( m × n , k , ρ )-OOC) with AM-OPPTS (at most one-pulse per time slot) property and a certain combinatorial subject, called an n -cyclic holey packing of type m n . By this link,...
Gespeichert in:
Veröffentlicht in: | Designs, codes, and cryptography codes, and cryptography, 2014-05, Vol.71 (2), p.315-330 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a new one-to-one correspondence between a two-dimensional (
m
×
n
,
k
,
ρ
) optical orthogonal code (2-D (
m
×
n
,
k
,
ρ
)-OOC) with AM-OPPTS (at most one-pulse per time slot) property and a certain combinatorial subject, called an
n
-cyclic holey packing of type
m
n
. By this link, an upper bound on the size of a 2-D (
m
×
n
,
k
,
ρ
)-OOC with AM-OPPTS property is derived. Afterwards, we employ combinatorial methods to construct infinitely many 2-D (
m
×
n
,
k
, 1)-OOCs with AM-OPPTS property, whose existence was previously unknown. All these constructions meet the upper bounds with equality and are thus optimal. |
---|---|
ISSN: | 0925-1022 1573-7586 |
DOI: | 10.1007/s10623-012-9733-z |