Characteristics of invariant weights related to code equivalence over rings

The Equivalence Theorem states that, for a given weight on an alphabet, every isometry between linear codes extends to a monomial transformation of the entire space. This theorem has been proved for several weights and alphabets, including the original MacWilliams’ Equivalence Theorem for the Hammin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Designs, codes, and cryptography codes, and cryptography, 2013, Vol.66 (1-3), p.145-156
Hauptverfasser: Greferath, Marcus, Mc Fadden, Cathy, Zumbrägel, Jens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Equivalence Theorem states that, for a given weight on an alphabet, every isometry between linear codes extends to a monomial transformation of the entire space. This theorem has been proved for several weights and alphabets, including the original MacWilliams’ Equivalence Theorem for the Hamming weight on codes over finite fields. The question remains: What conditions must a weight satisfy so that the Extension Theorem will hold? In this paper we provide an algebraic framework for determining such conditions, generalising the approach taken in Greferath and Honold (Proceedings of the Tenth International Workshop in Algebraic and Combinatorial Coding Theory (ACCT-10), pp. 106–111. Zvenigorod, Russia, 2006 ).
ISSN:0925-1022
1573-7586
DOI:10.1007/s10623-012-9671-9