The maximum order of adjacency matrices of graphs with a given rank

We look for the maximum order m ( r ) of the adjacency matrix A of a graph G with a fixed rank r , provided A has no repeated rows or all-zero row. Akbari, Cameron and Khosrovshahi conjecture that m ( r ) = 2 ( r +2)/2 − 2 if r is even, and m ( r ) = 5 · 2 ( r −3)/2 − 2 if r is odd. We prove the con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Designs, codes, and cryptography codes, and cryptography, 2012-12, Vol.65 (3), p.223-232
Hauptverfasser: Haemers, W. H., Peeters, M. J. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We look for the maximum order m ( r ) of the adjacency matrix A of a graph G with a fixed rank r , provided A has no repeated rows or all-zero row. Akbari, Cameron and Khosrovshahi conjecture that m ( r ) = 2 ( r +2)/2 − 2 if r is even, and m ( r ) = 5 · 2 ( r −3)/2 − 2 if r is odd. We prove the conjecture and characterize G in the case that G contains an induced subgraph or .
ISSN:0925-1022
1573-7586
DOI:10.1007/s10623-011-9548-3