Gauss periods as constructions of low complexity normal bases
Optimal normal bases are special cases of the so-called Gauss periods (Disquisitiones Arithmeticae, Articles 343–366); in particular, optimal normal bases are Gauss periods of type ( n , 1) for any characteristic and of type ( n , 2) for characteristic 2. We present the multiplication tables and com...
Gespeichert in:
Veröffentlicht in: | Designs, codes, and cryptography codes, and cryptography, 2012, Vol.62 (1), p.43-62 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Optimal normal bases are special cases of the so-called Gauss periods (Disquisitiones Arithmeticae, Articles 343–366); in particular, optimal normal bases are Gauss periods of type (
n
, 1) for any characteristic and of type (
n
, 2) for characteristic 2. We present the multiplication tables and complexities of Gauss periods of type (
n
,
t
) for all
n
and
t
= 3, 4, 5 over any finite field and give a slightly weaker result for Gauss periods of type (
n
, 6). In addition, we give some general results on the so-called cyclotomic numbers, which are intimately related to the structure of Gauss periods. We also present the general form of a normal basis obtained by the trace of any normal basis in a finite extension field. Then, as an application of the trace construction, we give upper bounds on the complexity of the trace of a Gauss period of type (
n
, 3). |
---|---|
ISSN: | 0925-1022 1573-7586 |
DOI: | 10.1007/s10623-011-9490-4 |