A spectrum result on minimal blocking sets with respect to the planes of PG(3, q), q odd
This article presents a spectrum result on minimal blocking sets with respect to the planes of PG(3, q ), q odd. We prove that for every integer k in an interval of, roughly, size [ q 2 /4, 3 q 2 /4], there exists such a minimal blocking set of size k in PG(3, q ), q odd. A similar result on the spe...
Gespeichert in:
Veröffentlicht in: | Designs, codes, and cryptography codes, and cryptography, 2010-05, Vol.55 (2-3), p.107-119 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents a spectrum result on minimal blocking sets with respect to the planes of PG(3,
q
),
q
odd. We prove that for every integer
k
in an interval of, roughly, size [
q
2
/4, 3
q
2
/4], there exists such a minimal blocking set of size
k
in PG(3,
q
),
q
odd. A similar result on the spectrum of minimal blocking sets with respect to the planes of PG(3,
q
),
q
even, was presented in Rößing and Storme (Eur J Combin 31:349–361, 2010). Since minimal blocking sets with respect to the planes in PG(3,
q
) are tangency sets, they define maximal partial 1-systems on the Klein quadric
Q
+
(5,
q
), so we get the same spectrum result for maximal partial 1-systems of lines on the Klein quadric
Q
+
(5,
q
),
q
odd. |
---|---|
ISSN: | 0925-1022 1573-7586 |
DOI: | 10.1007/s10623-010-9372-1 |