Convex two-level optimization problem
A two-level optimization problem is considered in which the objective functional of the second-level problem is minimized on the solution set of the first-level problem. Convergence of the modified penalty method is established. The main results include a continuous two-level optimization method bas...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and modeling 2008, Vol.19 (1), p.73-101 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A two-level optimization problem is considered in which the objective functional of the second-level problem is minimized on the solution set of the first-level problem. Convergence of the modified penalty method is established. The main results include a continuous two-level optimization method based on the regularized extremal shifting principle [3, 5, 6]. For a linearly convex problem, two-sided bounds on the approximation by the first-level functional are established in addition to convergence. For a linearly quadratic problem, two-sided bounds on the approximation by the second-level functional are derived. For a linearly quadratic problem with interval constraints, an explicit form of differential inclusions is presented for the implementation of the method. |
---|---|
ISSN: | 1046-283X 1573-837X |
DOI: | 10.1007/s10598-008-0007-6 |