Commutators of sublinear operators generated by Calderón-Zygmund operator on generalized weighted Morrey spaces

In this paper, the boundedness of a large class of sublinear commutator operators T b generated by a Calderón-Zygmund type operator on a generalized weighted Morrey spaces with the weight function w belonging to Muckenhoupt’s class A p is studied. When 1 < p < ∞ and b ∈ BMO, sufficient conditi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Czechoslovak mathematical journal 2014-06, Vol.64 (2), p.365-386
Hauptverfasser: Guliyev, Vagif Sabir, Karaman, Turhan, Mustafayev, Rza Chingiz, Şerbetçi, Ayhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the boundedness of a large class of sublinear commutator operators T b generated by a Calderón-Zygmund type operator on a generalized weighted Morrey spaces with the weight function w belonging to Muckenhoupt’s class A p is studied. When 1 < p < ∞ and b ∈ BMO, sufficient conditions on the pair ( φ 1 , φ 2 ) which ensure the boundedness of the operator T b from to are found. In all cases the conditions for the boundedness of T b are given in terms of Zygmund-type integral inequalities on ( φ 1 , φ 2 ), which do not require any assumption on monotonicity of φ 1 ( x , r ), φ 2 ( x , r ) in r . Then these results are applied to several particular operators such as the pseudo-differential operators, Littlewood-Paley operator, Marcinkiewicz operator and Bochner-Riesz operator.
ISSN:0011-4642
1572-9141
DOI:10.1007/s10587-014-0107-8