Commutators of sublinear operators generated by Calderón-Zygmund operator on generalized weighted Morrey spaces
In this paper, the boundedness of a large class of sublinear commutator operators T b generated by a Calderón-Zygmund type operator on a generalized weighted Morrey spaces with the weight function w belonging to Muckenhoupt’s class A p is studied. When 1 < p < ∞ and b ∈ BMO, sufficient conditi...
Gespeichert in:
Veröffentlicht in: | Czechoslovak mathematical journal 2014-06, Vol.64 (2), p.365-386 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the boundedness of a large class of sublinear commutator operators
T
b
generated by a Calderón-Zygmund type operator on a generalized weighted Morrey spaces
with the weight function
w
belonging to Muckenhoupt’s class
A
p
is studied. When 1 <
p
< ∞ and
b
∈ BMO, sufficient conditions on the pair (
φ
1
,
φ
2
) which ensure the boundedness of the operator
T
b
from
to
are found. In all cases the conditions for the boundedness of
T
b
are given in terms of Zygmund-type integral inequalities on (
φ
1
,
φ
2
), which do not require any assumption on monotonicity of
φ
1
(
x
,
r
),
φ
2
(
x
,
r
) in
r
. Then these results are applied to several particular operators such as the pseudo-differential operators, Littlewood-Paley operator, Marcinkiewicz operator and Bochner-Riesz operator. |
---|---|
ISSN: | 0011-4642 1572-9141 |
DOI: | 10.1007/s10587-014-0107-8 |