Pointwise inequalities of logarithmic type in Hardy-Hölder spaces

We prove some optimal logarithmic estimates in the Hardy space H ∞ ( G ) with Hölder regularity, where G is the open unit disk or an annular domain of ℂ. These estimates extend the results established by S.Chaabane and I.Feki in the Hardy-Sobolev space H k ,∞ of the unit disk and those of I. Feki in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Czechoslovak mathematical journal 2014-06, Vol.64 (2), p.351-363
Hauptverfasser: Chaabane, Slim, Feki, Imed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove some optimal logarithmic estimates in the Hardy space H ∞ ( G ) with Hölder regularity, where G is the open unit disk or an annular domain of ℂ. These estimates extend the results established by S.Chaabane and I.Feki in the Hardy-Sobolev space H k ,∞ of the unit disk and those of I. Feki in the case of an annular domain. The proofs are based on a variant of Hardy-Landau-Littlewood inequality for Hölder functions. As an application of these estimates, we study the stability of both the Cauchy problem for the Laplace operator and the Robin inverse problem.
ISSN:0011-4642
1572-9141
DOI:10.1007/s10587-014-0106-9