Pointwise inequalities of logarithmic type in Hardy-Hölder spaces
We prove some optimal logarithmic estimates in the Hardy space H ∞ ( G ) with Hölder regularity, where G is the open unit disk or an annular domain of ℂ. These estimates extend the results established by S.Chaabane and I.Feki in the Hardy-Sobolev space H k ,∞ of the unit disk and those of I. Feki in...
Gespeichert in:
Veröffentlicht in: | Czechoslovak mathematical journal 2014-06, Vol.64 (2), p.351-363 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove some optimal logarithmic estimates in the Hardy space
H
∞
(
G
) with Hölder regularity, where
G
is the open unit disk or an annular domain of ℂ. These estimates extend the results established by S.Chaabane and I.Feki in the Hardy-Sobolev space
H
k
,∞
of the unit disk and those of I. Feki in the case of an annular domain. The proofs are based on a variant of Hardy-Landau-Littlewood inequality for Hölder functions. As an application of these estimates, we study the stability of both the Cauchy problem for the Laplace operator and the Robin inverse problem. |
---|---|
ISSN: | 0011-4642 1572-9141 |
DOI: | 10.1007/s10587-014-0106-9 |