Another proof of a result of Jech and Shelah
Shelah’s pcf theory describes a certain structure which must exist if is strong limit and holds. Jech and Shelah proved the surprising result that this structure exists in ZFC. They first give a forcing extension in which the structure exists then argue that by some absoluteness results it must exis...
Gespeichert in:
Veröffentlicht in: | Czechoslovak mathematical journal 2013-09, Vol.63 (3), p.577-582 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Shelah’s pcf theory describes a certain structure which must exist if
is strong limit and
holds. Jech and Shelah proved the surprising result that this structure exists in ZFC. They first give a forcing extension in which the structure exists then argue that by some absoluteness results it must exist anyway. We reformulate the statement to the existence of a certain partially ordered set, and then we show by a straightforward, elementary (i.e., non-metamathematical) argument that such partially ordered sets exist. |
---|---|
ISSN: | 0011-4642 1572-9141 |
DOI: | 10.1007/s10587-013-0040-2 |