Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition

In this paper, first we introduce a new notion of commuting condition that φφ 1 A = A φ 1 φ between the shape operator A and the structure tensors φ and φ 1 for real hypersurfaces in G 2 (ℂ m +2 ). Suprisingly, real hypersurfaces of type ( A ), that is, a tube over a totally geodesic G 2 (ℂ m +1 ) i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Czechoslovak mathematical journal 2012-09, Vol.62 (3), p.849-861
Hauptverfasser: Lee, Hyunjin, Kim, Seonhui, Suh, Young Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, first we introduce a new notion of commuting condition that φφ 1 A = A φ 1 φ between the shape operator A and the structure tensors φ and φ 1 for real hypersurfaces in G 2 (ℂ m +2 ). Suprisingly, real hypersurfaces of type ( A ), that is, a tube over a totally geodesic G 2 (ℂ m +1 ) in complex two plane Grassmannians G 2 (ℂ m +2 ) satisfy this commuting condition. Next we consider a complete classification of Hopf hypersurfaces in G 2 (ℂ m +2 ) satisfying the commuting condition. Finally we get a characterization of Type ( A ) in terms of such commuting condition φφ 1 A = A φ 1 φ .
ISSN:0011-4642
1572-9141
DOI:10.1007/s10587-012-0049-y