Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition
In this paper, first we introduce a new notion of commuting condition that φφ 1 A = A φ 1 φ between the shape operator A and the structure tensors φ and φ 1 for real hypersurfaces in G 2 (ℂ m +2 ). Suprisingly, real hypersurfaces of type ( A ), that is, a tube over a totally geodesic G 2 (ℂ m +1 ) i...
Gespeichert in:
Veröffentlicht in: | Czechoslovak mathematical journal 2012-09, Vol.62 (3), p.849-861 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, first we introduce a new notion of commuting condition that
φφ
1
A
=
A
φ
1
φ
between the shape operator
A
and the structure tensors
φ
and
φ
1
for real hypersurfaces in
G
2
(ℂ
m
+2
). Suprisingly, real hypersurfaces of type (
A
), that is, a tube over a totally geodesic
G
2
(ℂ
m
+1
) in complex two plane Grassmannians
G
2
(ℂ
m
+2
) satisfy this commuting condition. Next we consider a complete classification of Hopf hypersurfaces in
G
2
(ℂ
m
+2
) satisfying the commuting condition. Finally we get a characterization of Type (
A
) in terms of such commuting condition
φφ
1
A
=
A
φ
1
φ
. |
---|---|
ISSN: | 0011-4642 1572-9141 |
DOI: | 10.1007/s10587-012-0049-y |