The Grothendieck property for injective tensor products of Banach spaces

Let X be a Banach space with the Grothendieck property, Y a reflexive Banach space, and let X ⊗̌ ɛ Y be the injective tensor product of X and Y . If either X ** or Y has the approximation property and each continuous linear operator from X * to Y is compact, then X ⊗̌ ɛ Y has the Grothendieck proper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Czechoslovak mathematical journal 2010-12, Vol.60 (4), p.1153-1159
Hauptverfasser: Ji, Donghai, Xue, Xiaoping, Bu, Qingying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be a Banach space with the Grothendieck property, Y a reflexive Banach space, and let X ⊗̌ ɛ Y be the injective tensor product of X and Y . If either X ** or Y has the approximation property and each continuous linear operator from X * to Y is compact, then X ⊗̌ ɛ Y has the Grothendieck property. In addition, if Y has an unconditional finite dimensional decomposition, then X ⊗̌ ɛ Y has the Grothendieck property if and only if each continuous linear operator from X * to Y is compact.
ISSN:0011-4642
1572-9141
DOI:10.1007/s10587-010-0080-9