The Grothendieck property for injective tensor products of Banach spaces
Let X be a Banach space with the Grothendieck property, Y a reflexive Banach space, and let X ⊗̌ ɛ Y be the injective tensor product of X and Y . If either X ** or Y has the approximation property and each continuous linear operator from X * to Y is compact, then X ⊗̌ ɛ Y has the Grothendieck proper...
Gespeichert in:
Veröffentlicht in: | Czechoslovak mathematical journal 2010-12, Vol.60 (4), p.1153-1159 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
be a Banach space with the Grothendieck property,
Y
a reflexive Banach space, and let
X
⊗̌
ɛ
Y
be the injective tensor product of
X
and
Y
.
If either
X
** or Y has the approximation property and each continuous linear operator from
X
* to
Y
is compact, then
X
⊗̌
ɛ
Y
has the Grothendieck property.
In addition, if
Y
has an unconditional finite dimensional decomposition, then
X
⊗̌
ɛ
Y
has the Grothendieck property if and only if each continuous linear operator from
X
* to
Y
is compact. |
---|---|
ISSN: | 0011-4642 1572-9141 |
DOI: | 10.1007/s10587-010-0080-9 |