Dynamical Systems Method of gradient type for solving nonlinear equations with monotone operators

A version of the Dynamical Systems Method (DSM) of gradient type for solving equation F ( u )= f where F : H → H is a monotone Fréchet differentiable operator in a Hilbert space H is studied in this paper. A discrepancy principle is proposed and the convergence to the minimal-norm solution is justif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BIT (Nordisk Tidskrift for Informationsbehandling) 2010-12, Vol.50 (4), p.751-780
1. Verfasser: Hoang, N. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A version of the Dynamical Systems Method (DSM) of gradient type for solving equation F ( u )= f where F : H → H is a monotone Fréchet differentiable operator in a Hilbert space H is studied in this paper. A discrepancy principle is proposed and the convergence to the minimal-norm solution is justified. Based on the DSM an iterative scheme is formulated and the convergence of this scheme to the minimal-norm solution is proved.
ISSN:0006-3835
1572-9125
DOI:10.1007/s10543-010-0284-2