Dynamical Systems Method of gradient type for solving nonlinear equations with monotone operators
A version of the Dynamical Systems Method (DSM) of gradient type for solving equation F ( u )= f where F : H → H is a monotone Fréchet differentiable operator in a Hilbert space H is studied in this paper. A discrepancy principle is proposed and the convergence to the minimal-norm solution is justif...
Gespeichert in:
Veröffentlicht in: | BIT (Nordisk Tidskrift for Informationsbehandling) 2010-12, Vol.50 (4), p.751-780 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A version of the Dynamical Systems Method (DSM) of gradient type for solving equation
F
(
u
)=
f
where
F
:
H
→
H
is a monotone Fréchet differentiable operator in a Hilbert space
H
is studied in this paper. A discrepancy principle is proposed and the convergence to the minimal-norm solution is justified. Based on the DSM an iterative scheme is formulated and the convergence of this scheme to the minimal-norm solution is proved. |
---|---|
ISSN: | 0006-3835 1572-9125 |
DOI: | 10.1007/s10543-010-0284-2 |