On Lagrange multipliers of trust-region subproblems
Trust-region methods are globally convergent techniques widely used, for example, in connection with the Newton’s method for unconstrained optimization. One of the most commonly-used iterative approaches for solving trust-region subproblems is the Steihaug–Toint method which is based on conjugate gr...
Gespeichert in:
Veröffentlicht in: | BIT (Nordisk Tidskrift for Informationsbehandling) 2008-12, Vol.48 (4), p.763-768 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Trust-region methods are globally convergent techniques widely used, for example, in connection with the Newton’s method for unconstrained optimization. One of the most commonly-used iterative approaches for solving trust-region subproblems is the Steihaug–Toint method which is based on conjugate gradient iterations and seeks a solution on Krylov subspaces. This paper contains new theoretical results concerning properties of Lagrange multipliers obtained on these subspaces. |
---|---|
ISSN: | 0006-3835 1572-9125 |
DOI: | 10.1007/s10543-008-0197-5 |