On Lagrange multipliers of trust-region subproblems

Trust-region methods are globally convergent techniques widely used, for example, in connection with the Newton’s method for unconstrained optimization. One of the most commonly-used iterative approaches for solving trust-region subproblems is the Steihaug–Toint method which is based on conjugate gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BIT (Nordisk Tidskrift for Informationsbehandling) 2008-12, Vol.48 (4), p.763-768
Hauptverfasser: Lukšan, L., Matonoha, C., Vlček, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Trust-region methods are globally convergent techniques widely used, for example, in connection with the Newton’s method for unconstrained optimization. One of the most commonly-used iterative approaches for solving trust-region subproblems is the Steihaug–Toint method which is based on conjugate gradient iterations and seeks a solution on Krylov subspaces. This paper contains new theoretical results concerning properties of Lagrange multipliers obtained on these subspaces.
ISSN:0006-3835
1572-9125
DOI:10.1007/s10543-008-0197-5