Development of DDES and IDDES Formulations for the k-ω Shear Stress Transport Model
Modifications are proposed of two recently developed hybrid CFD strategies, Delayed Detached Eddy Simulation (DDES) and DDES with Improved wall-modeling capability (IDDES). The modifications are aimed at fine-tuning of these approaches to the k-ω SST background RANS model. The first one includes rec...
Gespeichert in:
Veröffentlicht in: | Flow, turbulence and combustion turbulence and combustion, 2012-04, Vol.88 (3), p.431-449 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Modifications are proposed of two recently developed hybrid CFD strategies, Delayed Detached Eddy Simulation (DDES) and DDES with Improved wall-modeling capability (IDDES). The modifications are aimed at fine-tuning of these approaches to the k-ω SST background RANS model. The first one includes recalibrated empirical constants in the shielding function of the SA-based DDES model which are shown to be suboptimal (not providing the needed level of elimination of the Model Stress Depletion (MSD)) for the SST-based DDES model. For the SST-IDDES variant, in addition to that, a simplification of the original SA–based formulation is proposed, which does not cause any visible degradation of the model performance. Both modifications are extensively tested on a range of attached and separated flows (developed channel, backward-facing step, periodic hills, wall-mounted hump, and hydrofoil with trailing edge separation). |
---|---|
ISSN: | 1386-6184 1573-1987 |
DOI: | 10.1007/s10494-011-9378-4 |