Experimental Investigation on Turbulent Structure of Drag Reducing Channel Flow with Blowing Polymer Solution from the Wall
Turbulent drag reducing flow with blowing polymer solution from the channel wall was investigated experimentally using particle image velocimetry (PIV). Experiments were carried out with varying conditions of blowing polymer solution (e.g. weight concentration of polymer solution). Reynolds number b...
Gespeichert in:
Veröffentlicht in: | Flow, turbulence and combustion turbulence and combustion, 2012-03, Vol.88 (1-2), p.121-141 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Turbulent drag reducing flow with blowing polymer solution from the channel wall was investigated experimentally using particle image velocimetry (PIV). Experiments were carried out with varying conditions of blowing polymer solution (e.g. weight concentration of polymer solution). Reynolds number based on the channel height and mean velocity was set to 20000 and 40000. When the polymer solution was blown from the channel wall, streamwise velocity fluctuation little increased, but wall-normal velocity fluctuation, Reynolds shear stress and correlation coefficient decreased significantly only near the blower wall. This behavior corresponds to the decrease of the ejection and sweep in the near-wall region observed by the investigation of instantaneous velocity map. On the contrary, this characteristic behavior was not observed at a position away from the blower wall (
y
/(
H
/2) > 0.4) and the scatter plot was almost the same as that of the water flow in this region. These results suggest that there are two regions in the drag reducing flow with blowing polymer solution from the wall; one is a non-Newtonian region which exists near the blower wall, and the other is a Newtonian region at a distance from the wall. The non-Newtonian region plays a key role in the drag reduction by the blowing polymer solution. |
---|---|
ISSN: | 1386-6184 1573-1987 |
DOI: | 10.1007/s10494-011-9358-8 |