Hyperfinite graphings and combinatorial optimization

We exhibit an analogy between the problem of pushing forward measurable sets under measure preserving maps and linear relaxations in combinatorial optimization. We show how invariance of hyperfiniteness of graphings under local isomorphism can be reformulated as an infinite version of a natural comb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Hungarica 2020-08, Vol.161 (2), p.516-539
1. Verfasser: Lovasz, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We exhibit an analogy between the problem of pushing forward measurable sets under measure preserving maps and linear relaxations in combinatorial optimization. We show how invariance of hyperfiniteness of graphings under local isomorphism can be reformulated as an infinite version of a natural combinatorial optimization problem, and how one can prove it by extending wellknown proof techniques (linear relaxation, greedy algorithm, linear programming duality) from the finite case to the infinite.
ISSN:0236-5294
1588-2632
DOI:10.1007/s10474-020-01065-y