Hyperfinite graphings and combinatorial optimization
We exhibit an analogy between the problem of pushing forward measurable sets under measure preserving maps and linear relaxations in combinatorial optimization. We show how invariance of hyperfiniteness of graphings under local isomorphism can be reformulated as an infinite version of a natural comb...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Hungarica 2020-08, Vol.161 (2), p.516-539 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We exhibit an analogy between the problem of pushing forward measurable sets under measure preserving maps and linear relaxations in combinatorial optimization. We show how invariance of hyperfiniteness of graphings under local isomorphism can be reformulated as an infinite version of a natural combinatorial optimization problem, and how one can prove it by extending wellknown proof techniques (linear relaxation, greedy algorithm, linear programming duality) from the finite case to the infinite. |
---|---|
ISSN: | 0236-5294 1588-2632 |
DOI: | 10.1007/s10474-020-01065-y |