Weak law of large numbers for linear processes
We establish sufficient conditions for the Marcinkiewicz–Zygmund type weak law of large numbers for a linear process { X k : k ∈ Z } defined by X k = ∑ j = 0 ∞ ψ j ε k - j for k ∈ Z , where { ψ j : j ∈ Z } ⊂ R and { ε k : k ∈ Z } are independent and identically distributed random variables such that...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Hungarica 2016-06, Vol.149 (1), p.215-232 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish sufficient conditions for the Marcinkiewicz–Zygmund type weak law of large numbers for a linear process
{
X
k
:
k
∈
Z
}
defined by
X
k
=
∑
j
=
0
∞
ψ
j
ε
k
-
j
for
k
∈
Z
, where
{
ψ
j
:
j
∈
Z
}
⊂
R
and
{
ε
k
:
k
∈
Z
}
are independent and identically distributed random variables such that
x
p
Pr
{
|
ε
0
|
>
x
}
→
0
as
x
→
∞
with
1
<
p
<
2
and
E
ε
0
=
0
. We use an abstract norming sequence that does not grow faster than
n
1
/
p
if
∑
|
ψ
j
|
<
∞
. If
∑
|
ψ
j
|
=
∞
, the abstract norming sequence might grow faster than
n
1
/
p
as we illustrate with an example. Also, we investigate the rate of convergence in the Marcinkiewicz–Zygmund type weak law of large numbers for the linear process. |
---|---|
ISSN: | 0236-5294 1588-2632 |
DOI: | 10.1007/s10474-016-0603-4 |