On projectively flat Finsler spaces

First we present a short overview of the long history of projectively flat Finsler spaces. We give a simple and quite elementary proof of the already known condition for the projective flatness, and we give a criterion for the projective flatness of a special Lagrange space (Theorem 1). After this w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Hungarica 2013-12, Vol.141 (4), p.383-400
Hauptverfasser: Binh, T. Q., Kertész, D. Cs, Tamássy, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:First we present a short overview of the long history of projectively flat Finsler spaces. We give a simple and quite elementary proof of the already known condition for the projective flatness, and we give a criterion for the projective flatness of a special Lagrange space (Theorem 1). After this we obtain a second-order PDE system, whose solvability is necessary and sufficient for a Finsler space to be projectively flat (Theorem 2). We also derive a condition in order that an infinitesimal transformation takes geodesics of a Finsler space into geodesics. This yields a Killing type vector field (Theorem 3). In the last section we present a characterization of the Finsler spaces which are projectively flat in a parameter-preserving manner (Theorem 4), and we show that these spaces over are exactly the Minkowski spaces (Theorems 5 and 6).
ISSN:0236-5294
1588-2632
DOI:10.1007/s10474-013-0327-7