Representing the GCD as linear combination in non-PID rings

We prove the following fact: If finitely many elements p 1 , p 2 ,…, p n of a unique factorization domain are given such that the greatest common divisor of each pair ( p i , p j ) can be expressed as a linear combination of p i and  p j , then the greatest common divisor of all the p i ’s can also...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Hungarica 2013-08, Vol.140 (3), p.243-247
1. Verfasser: Kós, Géza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the following fact: If finitely many elements p 1 , p 2 ,…, p n of a unique factorization domain are given such that the greatest common divisor of each pair ( p i , p j ) can be expressed as a linear combination of p i and  p j , then the greatest common divisor of all the p i ’s can also be expressed as a linear combination of p 1 ,…, p n . We prove an analogous statement in general commutative rings.
ISSN:0236-5294
1588-2632
DOI:10.1007/s10474-013-0314-z