Representing the GCD as linear combination in non-PID rings
We prove the following fact: If finitely many elements p 1 , p 2 ,…, p n of a unique factorization domain are given such that the greatest common divisor of each pair ( p i , p j ) can be expressed as a linear combination of p i and p j , then the greatest common divisor of all the p i ’s can also...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Hungarica 2013-08, Vol.140 (3), p.243-247 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the following fact: If finitely many elements
p
1
,
p
2
,…,
p
n
of a unique factorization domain are given such that the greatest common divisor of each pair (
p
i
,
p
j
) can be expressed as a linear combination of
p
i
and
p
j
, then the greatest common divisor of all the
p
i
’s can also be expressed as a linear combination of
p
1
,…,
p
n
. We prove an analogous statement in general commutative rings. |
---|---|
ISSN: | 0236-5294 1588-2632 |
DOI: | 10.1007/s10474-013-0314-z |