On football manifolds of E. Molnár

A closed 3-manifold M is said to be hyperelliptic if it has an involution τ such that the quotient space of M by the action of τ is homeomorphic to the standard 3-sphere. We show that the hyperbolic football manifolds of Emil Molnár [12] are hyperelliptic. Then we determine the isometry groups of su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Hungarica 2009-09, Vol.124 (4), p.321-332
Hauptverfasser: Cavicchioli, A., Telloni, A. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A closed 3-manifold M is said to be hyperelliptic if it has an involution τ such that the quotient space of M by the action of τ is homeomorphic to the standard 3-sphere. We show that the hyperbolic football manifolds of Emil Molnár [12] are hyperelliptic. Then we determine the isometry groups of such manifolds. Another consequence is that the unique hyperbolic dodecahedral and icosahedral 3-space forms with first homology group ℤ 35 (constructed by I. Prok in [16], on the basis of a principal algorithm due to Emil Molnár [13], and by Richardson and Rubinstein in [18]) are also hyperelliptic.
ISSN:0236-5294
1588-2632
DOI:10.1007/s10474-009-8196-9