Laplace Transforms for Analytic Functions in Tubular Domains

Assume that 0 < p < ∞ and that B is a connected nonempty open set in ℝ n , and that A p ( B ) is the vector space of all holomorphic functions F in the tubular domains ℝ n + i B such that for any compact set K ⊂ B , ‖ y ↦ ‖ x ↦ F ( x + i y ) ‖ L p ( ℝ n ) ‖ L ( K ) < ∞ , so A p ( B ) is a F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2021-11, Vol.41 (6), p.1938-1948
Hauptverfasser: Deng, Guantie, Fu, Qian, Cao, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Assume that 0 < p < ∞ and that B is a connected nonempty open set in ℝ n , and that A p ( B ) is the vector space of all holomorphic functions F in the tubular domains ℝ n + i B such that for any compact set K ⊂ B , ‖ y ↦ ‖ x ↦ F ( x + i y ) ‖ L p ( ℝ n ) ‖ L ( K ) < ∞ , so A p ( B ) is a Fréchet space with the Heine-Borel property, its topology is induced by a complete invariant metric, is not locally bounded, and hence is not normal. Furthermore, if 1 ≤ p ≤ 2, then the element F of A p ( B ) can be written as a Laplace transform of some function f ∈ L (ℝ n ).
ISSN:0252-9602
1572-9087
DOI:10.1007/s10473-021-0610-6