Laplace Transforms for Analytic Functions in Tubular Domains
Assume that 0 < p < ∞ and that B is a connected nonempty open set in ℝ n , and that A p ( B ) is the vector space of all holomorphic functions F in the tubular domains ℝ n + i B such that for any compact set K ⊂ B , ‖ y ↦ ‖ x ↦ F ( x + i y ) ‖ L p ( ℝ n ) ‖ L ( K ) < ∞ , so A p ( B ) is a F...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2021-11, Vol.41 (6), p.1938-1948 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Assume that 0 <
p
< ∞ and that
B
is a connected nonempty open set in
ℝ
n
, and that
A
p
(
B
) is the vector space of all holomorphic functions
F
in the tubular domains
ℝ
n
+ i
B
such that for any compact set
K
⊂
B
,
‖
y
↦
‖
x
↦
F
(
x
+
i
y
)
‖
L
p
(
ℝ
n
)
‖
L
(
K
)
<
∞
,
so
A
p
(
B
) is a Fréchet space with the Heine-Borel property, its topology is induced by a complete invariant metric, is not locally bounded, and hence is not normal. Furthermore, if 1 ≤
p
≤ 2, then the element
F
of
A
p
(
B
) can be written as a Laplace transform of some function
f
∈
L
(ℝ
n
). |
---|---|
ISSN: | 0252-9602 1572-9087 |
DOI: | 10.1007/s10473-021-0610-6 |