Contractions of infrainvariant systems of subgroups

We create a method which allows an arbitrary group G with an infrainvariant system ℒ( G ) of subgroups to be embedded in a group G * with an infrainvariant system ℒ( G *) of subgroups, so that G α * ∩ G ∈ ℒ( G ) for every subgroup G α * ∩ G ∈ ℒ( G* ) and each factor B/A of a jump of subgroups in ℒ(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and logic 2009-09, Vol.48 (5), p.344-356
1. Verfasser: Kopytov, V. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We create a method which allows an arbitrary group G with an infrainvariant system ℒ( G ) of subgroups to be embedded in a group G * with an infrainvariant system ℒ( G *) of subgroups, so that G α * ∩ G ∈ ℒ( G ) for every subgroup G α * ∩ G ∈ ℒ( G* ) and each factor B/A of a jump of subgroups in ℒ( G* ) is isomorphic to a factor of a jump in ℒ( G ), or to any specified group H . Using this method, we state new results on right-ordered groups. In particular, it is proved that every Conrad right-ordered group is embedded with preservation of order in a Conrad right-ordered group of Hahn type (i.e., a right-ordered group whose factors of jumps of convex subgroups are order isomorphic to the additive group ℝ); every right-ordered Smirnov group is embedded in a right-ordered Smirnov group of Hahn type; a new proof is given for the Holland–McCleary theorem on embedding every linearly ordered group in a linearly ordered group of Hahn type.
ISSN:0002-5232
1573-8302
DOI:10.1007/s10469-009-9066-9