Contractions of infrainvariant systems of subgroups
We create a method which allows an arbitrary group G with an infrainvariant system ℒ( G ) of subgroups to be embedded in a group G * with an infrainvariant system ℒ( G *) of subgroups, so that G α * ∩ G ∈ ℒ( G ) for every subgroup G α * ∩ G ∈ ℒ( G* ) and each factor B/A of a jump of subgroups in ℒ(...
Gespeichert in:
Veröffentlicht in: | Algebra and logic 2009-09, Vol.48 (5), p.344-356 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We create a method which allows an arbitrary group
G
with an infrainvariant system ℒ(
G
) of subgroups to be embedded in a group
G
* with an infrainvariant system ℒ(
G
*) of subgroups, so that
G
α
*
∩
G
∈ ℒ(
G
) for every subgroup
G
α
*
∩
G
∈ ℒ(
G*
) and each factor B/A of a jump of subgroups in ℒ(
G*
) is isomorphic to a factor of a jump in ℒ(
G
), or to any specified group
H
. Using this method, we state new results on right-ordered groups. In particular, it is proved that every Conrad right-ordered group is embedded with preservation of order in a Conrad right-ordered group of Hahn type (i.e., a right-ordered group whose factors of jumps of convex subgroups are order isomorphic to the additive group ℝ); every right-ordered Smirnov group is embedded in a right-ordered Smirnov group of Hahn type; a new proof is given for the Holland–McCleary theorem on embedding every linearly ordered group in a linearly ordered group of Hahn type. |
---|---|
ISSN: | 0002-5232 1573-8302 |
DOI: | 10.1007/s10469-009-9066-9 |