Localization of Triangulated Categories with Respect to Extension-Closed Subcategories

The aim of this paper is to develop a framework for localization theory of triangulated categories C , that is, from a given extension-closed subcategory N of C , we construct a natural extriangulated structure on C together with an exact functor Q : C → C ~ N satisfying a suitable universality, whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebras and representation theory 2024-06, Vol.27 (3), p.1603-1640
1. Verfasser: Ogawa, Yasuaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this paper is to develop a framework for localization theory of triangulated categories C , that is, from a given extension-closed subcategory N of C , we construct a natural extriangulated structure on C together with an exact functor Q : C → C ~ N satisfying a suitable universality, which unifies several phenomena. Precisely, a given subcategory N is thick if and only if the localization C ~ N corresponds to a triangulated category. In this case, Q is nothing other than the usual Verdier quotient. Furthermore, it is revealed that C ~ N is an exact category if and only if N satisfies a generating condition Cone ( N , N ) = C . Such an (abelian) exact localization C ~ N provides a good understanding of some cohomological functors C → Ab , e.g., the heart of t -structures on C and the abelian quotient of C by a cluster-tilting subcategory N .
ISSN:1386-923X
1572-9079
DOI:10.1007/s10468-024-10272-y