Localization of Triangulated Categories with Respect to Extension-Closed Subcategories
The aim of this paper is to develop a framework for localization theory of triangulated categories C , that is, from a given extension-closed subcategory N of C , we construct a natural extriangulated structure on C together with an exact functor Q : C → C ~ N satisfying a suitable universality, whi...
Gespeichert in:
Veröffentlicht in: | Algebras and representation theory 2024-06, Vol.27 (3), p.1603-1640 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this paper is to develop a framework for localization theory of triangulated categories
C
, that is, from a given extension-closed subcategory
N
of
C
, we construct a natural extriangulated structure on
C
together with an exact functor
Q
:
C
→
C
~
N
satisfying a suitable universality, which unifies several phenomena. Precisely, a given subcategory
N
is thick if and only if the localization
C
~
N
corresponds to a triangulated category. In this case,
Q
is nothing other than the usual Verdier quotient. Furthermore, it is revealed that
C
~
N
is an exact category if and only if
N
satisfies a generating condition
Cone
(
N
,
N
)
=
C
. Such an (abelian) exact localization
C
~
N
provides a good understanding of some cohomological functors
C
→
Ab
, e.g., the heart of
t
-structures on
C
and the abelian quotient of
C
by a cluster-tilting subcategory
N
. |
---|---|
ISSN: | 1386-923X 1572-9079 |
DOI: | 10.1007/s10468-024-10272-y |