The Dixmier-Moeglin Equivalence for Cocommutative Hopf Algebras of Finite Gelfand-Kirillov Dimension

Let k be an algebraically closed field of characteristic zero and let H be a noetherian cocommutative Hopf algebra over k . We show that if H has polynomially bounded growth then H satisfies the Dixmier-Moeglin equivalence. That is, for every prime ideal P in Spec( H ) we have the equivalences P pri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebras and representation theory 2014-12, Vol.17 (6), p.1843-1852
Hauptverfasser: Bell, Jason P., Leung, Wing Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let k be an algebraically closed field of characteristic zero and let H be a noetherian cocommutative Hopf algebra over k . We show that if H has polynomially bounded growth then H satisfies the Dixmier-Moeglin equivalence. That is, for every prime ideal P in Spec( H ) we have the equivalences P primitive ⇔ P rational ⇔ P locally closed in Spec ( H ) . We observe that examples due to Lorenz show that this does not hold without the hypothesis that H have polynomially bounded growth. We conjecture, more generally, that the Dixmier-Moeglin equivalence holds for all finitely generated complex noetherian Hopf algebras of polynomially bounded growth.
ISSN:1386-923X
1572-9079
DOI:10.1007/s10468-014-9474-y