On Derivations in Semiprime Rings
Let R be a ring, S a nonempty subset of R and d a derivation on R . A mapping is called commuting on S if [ f ( x ), x ] = 0 for all x ∈ S . In this paper, our purpose is to produce commutativity results for rings and show that if R is a 2-torsion free semiprime ring and I a nonzero ideal of R , t...
Gespeichert in:
Veröffentlicht in: | Algebras and representation theory 2012-12, Vol.15 (6), p.1023-1033 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
R
be a ring,
S
a nonempty subset of
R
and
d
a derivation on
R
. A mapping
is called commuting on
S
if [
f
(
x
),
x
] = 0 for all
x
∈
S
. In this paper, our purpose is to produce commutativity results for rings and show that if
R
is a 2-torsion free semiprime ring and
I
a nonzero ideal of
R
, then a derivation
d
of
R
is commuting on
I
if one of the following conditions holds: (i)
d
(
x
) ∘
d
(
y
) =
x
∘
y
(ii)
d
(
x
) ∘
d
(
y
) = − (
x
∘
y
) (iii)
d
(
x
) ∘
d
(
y
) = 0 (iv) [
d
(
x
),
d
(
y
)] = − [
x
,
y
] (v)
d
(
x
)
d
(
y
) =
xy
(vi)
d
(
x
)
d
(
y
) = −
xy
(vii)
d
(
x
)
d
(
y
) =
yx
(viii)
d
(
x
)
d
(
x
) =
x
2
for all
x
,
y
∈
I
. Further, if
d
(
I
) ≠ 0, then
R
has a nonzero central ideal. Finally, some examples are given to demonstrate that the restrictions imposed on the hypotheses of the various results are not superfluous. |
---|---|
ISSN: | 1386-923X 1572-9079 |
DOI: | 10.1007/s10468-011-9271-9 |