On Derivations in Semiprime Rings

Let R be a ring, S a nonempty subset of R and d a derivation on R . A mapping is called commuting on S if [ f ( x ), x ] = 0 for all x  ∈  S . In this paper, our purpose is to produce commutativity results for rings and show that if R is a 2-torsion free semiprime ring and I a nonzero ideal of R , t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebras and representation theory 2012-12, Vol.15 (6), p.1023-1033
Hauptverfasser: Ali, Shakir, Shuliang, Huang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R be a ring, S a nonempty subset of R and d a derivation on R . A mapping is called commuting on S if [ f ( x ), x ] = 0 for all x  ∈  S . In this paper, our purpose is to produce commutativity results for rings and show that if R is a 2-torsion free semiprime ring and I a nonzero ideal of R , then a derivation d of R is commuting on I if one of the following conditions holds: (i) d ( x ) ∘  d ( y ) =  x  ∘  y (ii) d ( x ) ∘  d ( y ) = − ( x  ∘  y ) (iii) d ( x ) ∘  d ( y ) = 0 (iv) [ d ( x ), d ( y )] = − [ x , y ] (v) d ( x ) d ( y ) =  xy (vi) d ( x ) d ( y ) = −  xy (vii) d ( x ) d ( y ) =  yx (viii) d ( x ) d ( x ) =  x 2 for all x , y  ∈  I . Further, if d ( I ) ≠ 0, then R has a nonzero central ideal. Finally, some examples are given to demonstrate that the restrictions imposed on the hypotheses of the various results are not superfluous.
ISSN:1386-923X
1572-9079
DOI:10.1007/s10468-011-9271-9