Coactions on Spaces of Morphisms

We study certain comodule structures on spaces of linear morphisms between H -comodules, where H is a Hopf algebra over the field k . We apply the results to show that H has non-zero integrals if and only if there exists a non-zero finite dimensional injective right H -comodule. Using this approach,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebras and representation theory 2009-10, Vol.12 (2-5), p.193-198
Hauptverfasser: Dăscălescu, S., Năstăsescu, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study certain comodule structures on spaces of linear morphisms between H -comodules, where H is a Hopf algebra over the field k . We apply the results to show that H has non-zero integrals if and only if there exists a non-zero finite dimensional injective right H -comodule. Using this approach, we prove an extension of a result of Sullivan, by showing that if H is involutory and has non-zero integrals, and there exists an injective indecomposable right comodule whose dimension is not a multiple of char( k ), then H is cosemisimple. Also we prove without using character theory that if H is cosemisimple and M is an absolutely irreducible right H -comodule, then char( k ) does not divide dim( M ).
ISSN:1386-923X
1572-9079
DOI:10.1007/s10468-009-9154-5