Coactions on Spaces of Morphisms
We study certain comodule structures on spaces of linear morphisms between H -comodules, where H is a Hopf algebra over the field k . We apply the results to show that H has non-zero integrals if and only if there exists a non-zero finite dimensional injective right H -comodule. Using this approach,...
Gespeichert in:
Veröffentlicht in: | Algebras and representation theory 2009-10, Vol.12 (2-5), p.193-198 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study certain comodule structures on spaces of linear morphisms between
H
-comodules, where
H
is a Hopf algebra over the field
k
. We apply the results to show that
H
has non-zero integrals if and only if there exists a non-zero finite dimensional injective right
H
-comodule. Using this approach, we prove an extension of a result of Sullivan, by showing that if
H
is involutory and has non-zero integrals, and there exists an injective indecomposable right comodule whose dimension is not a multiple of char(
k
), then
H
is cosemisimple. Also we prove without using character theory that if
H
is cosemisimple and
M
is an absolutely irreducible right
H
-comodule, then char(
k
) does not divide dim(
M
). |
---|---|
ISSN: | 1386-923X 1572-9079 |
DOI: | 10.1007/s10468-009-9154-5 |