Hermite WENO-based limiters for high order discontinuous Galerkin method on unstructured grids
A novel class of weighted essentially nonoscillatory (WENO) schemes based on Hermite polynomi- als, termed as HWENO schemes, is developed and applied as limiters for high order discontinuous Galerkin (DG) method on triangular grids. The developed HWENO methodology utilizes high-order derivative info...
Gespeichert in:
Veröffentlicht in: | Acta mechanica Sinica 2012-04, Vol.28 (2), p.241-252 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel class of weighted essentially nonoscillatory (WENO) schemes based on Hermite polynomi- als, termed as HWENO schemes, is developed and applied as limiters for high order discontinuous Galerkin (DG) method on triangular grids. The developed HWENO methodology utilizes high-order derivative information to keep WENO re- construction stencils in the von Neumann neighborhood. A simple and efficient technique is also proposed to enhance the smoothness of the existing stencils, making higher-order scheme stable and simplifying the reconstruction process at the same time. The resulting HWENO-based limiters are as compact as the underlying DG schemes and therefore easy to implement. Numerical results for a wide range of flow conditions demonstrate that for DG schemes of up to fourth order of accuracy, the designed HWENO limiters can simul- taneously obtain uniform high order accuracy and sharp, es- sentially non-oscillatory shock transition. |
---|---|
ISSN: | 0567-7718 1614-3116 |
DOI: | 10.1007/s10409-012-0062-2 |