High Accuracy Analysis of the Lowest Order H1-Galerkin Mixed Finite Element Method for Nonlinear Sine-Gordon Equations
The lowest order H1-Galerkin mixed finite element method (for short MFEM) is proposed for a class of nonlinear sine-Gordon equations with the simplest bilinear rectangular element and zero order Raviart- Thomas element. Base on the interpolation operator instead of the traditional Ritz projection op...
Gespeichert in:
Veröffentlicht in: | Acta Mathematicae Applicatae Sinica 2017-07, Vol.33 (3), p.699-708 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The lowest order H1-Galerkin mixed finite element method (for short MFEM) is proposed for a class of nonlinear sine-Gordon equations with the simplest bilinear rectangular element and zero order Raviart- Thomas element. Base on the interpolation operator instead of the traditional Ritz projection operator which is an indispensable tool in the traditional FEM analysis, together with mean-value technique and high accuracy analysis, the superclose properties of order O(h2)/O(h2 + r2) in Hi-norm and H(div; Ω)-norm axe deduced for the semi-discrete and the fully-discrete schemes, where h, r- denote the mesh size and the time step, respectively, which improve the results in the previous literature. |
---|---|
ISSN: | 0168-9673 1618-3932 |
DOI: | 10.1007/s10255-017-0692-z |