Hierarchical Mixture Models for Zero-inflated Correlated Count Data
Count data with excess zeros are often encountered in many medical, biomedical and public health applications. In this paper, an extension of zero-inflated Poisson mixed regression models is presented for dealing with multilevel data set, referred as hierarchical mixture zero-inflated Poisson mixed...
Gespeichert in:
Veröffentlicht in: | Acta Mathematicae Applicatae Sinica 2016-06, Vol.32 (2), p.373-384 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Count data with excess zeros are often encountered in many medical, biomedical and public health applications. In this paper, an extension of zero-inflated Poisson mixed regression models is presented for dealing with multilevel data set, referred as hierarchical mixture zero-inflated Poisson mixed regression models. A stochastic EM algorithm is developed for obtaining the ML estimates of interested parameters and a model comparison is also considered for comparing models with different latent classes through BIC criterion. An application to the analysis of count data from a Shanghai Adolescence Fitness Survey and a simulation study illustrate the usefulness and effectiveness of our methodologies. |
---|---|
ISSN: | 0168-9673 1618-3932 |
DOI: | 10.1007/s10255-016-0564-y |