Multiple Limit Cycles Bifurcation From the Degenerate Singularity for a Class of Three-dimensional Systems
In this paper,bifurcation of small amplitude limit cycles from the degenerate equilibrium of a three-dimensional system is investigated.Firstly,the method to calculate the focal values at nilpotent critical point on center manifold is discussed.Then an example is studied,by computing the quasi-Lyapu...
Gespeichert in:
Veröffentlicht in: | Acta Mathematicae Applicatae Sinica 2016-06, Vol.32 (1), p.73-80 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper,bifurcation of small amplitude limit cycles from the degenerate equilibrium of a three-dimensional system is investigated.Firstly,the method to calculate the focal values at nilpotent critical point on center manifold is discussed.Then an example is studied,by computing the quasi-Lyapunov constants,the existence of at least 4 limit cycles on the center manifold is proved.In terms of degenerate singularity in high-dimensional systems,our work is new. |
---|---|
ISSN: | 0168-9673 1618-3932 |
DOI: | 10.1007/s10255-015-0510-4 |