On the Spectrum of Mutually r-orthogonal Idempotent Latin Squares
Two Latin squares of order v are r-orthogonal if their superposition produces exactly r distinct ordered pairs. The two squares are said to be r-orthogonal idempotent Latin squares and denoted by r-MOILS(v)if they are all idempotent. In this paper, we show that for any integer v≥28, there exists an...
Gespeichert in:
Veröffentlicht in: | Acta Mathematicae Applicatae Sinica 2015-01, Vol.31 (3), p.813-822 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two Latin squares of order v are r-orthogonal if their superposition produces exactly r distinct ordered pairs. The two squares are said to be r-orthogonal idempotent Latin squares and denoted by r-MOILS(v)if they are all idempotent. In this paper, we show that for any integer v≥28, there exists an r-MOILS(v) if and only if r∈[v, v^2]/ {v + 1, v^2-1}. |
---|---|
ISSN: | 0168-9673 1618-3932 |
DOI: | 10.1007/s10255-015-0507-z |